Sifeng Mao
PhD, Professor
International College of Pharmaceutical Innovation
E-mail: sfmao@suda.edu.cn
Mobile: 17743517096
Biography
Sifeng Mao is a Professor in International College of Pharmaceutical Innovation, Soochow University. Prof. Mao received his B.Sc (2009) and M.Sc (2012) from Tsinghua University, his PhD degree (2016) from Tokyo Metropolitan University. After graduation, he worked as a postdoctoral fellow in Department of Chemistry, Tsinghua University from 2016 to 2020. Then, he worked as an assistant professor for Molecular Applied Chemistry in Tokyo Metropolitan University until 2024. He received “Young Leading Scientist Award” from Tokyo Metropolitan University on 2022. From Jan 2025, he joined International College of Pharmaceutical Innovation, Soochow University as a professor. His research interests mainly focus on pharmaceutical analysis, single cell biology, and biosensing.
Prof. Mao has published 69 peer-reviewed papers, including in Chem. Soc. Rev. (IF 40.4), Angew. Chem. (IF 16.1), Adv. Sci. (IF 14.3), Trends Anal. Chem. (IF 11.8), Biosens. Bioelectron. (IF 10.7), Chem. Sci. (IF 7.5), Anal. Chem. (IF 6.8) among others, with over 1900 times of citations (H-Index 27). He is a co-inventor in 10 authorized patents. He has led 4 projects from National Natural Science Foundation of China and Japan Society for the Promotion of Science, also joined 3 projects from National Natural Science Foundation of China. He is a peer reviewer for Adv. Sci., Trends Anal. Chem., Anal. Chem., Talanta and so on.
Research Interests
1. Cell drug analysis
2. Exosomal therapy and exosome fusion
3. Biosensing and single cell biosensing
4. Single cell and subcellular analysis
5. Nanomaterials assembly and their applications in pharmaceutical analysis
Select Publications:(†First author;*Corresponding author)
1. A. Fu, S. Mao*, N. Kasai, H. Zhu, H. Zeng*, Biosensors and Bioelectronics, Dynamic tissue model in vitro and its application for assessment of microplastics-induced toxicity to air-blood barrier (ABB), 2024, 115858.
2. J. Yang, Y. He, Z. Li, X. Yang, Y. Gao, M. Chen, Y. Zheng, S. Mao*, X. Shi*, Intelligent wound dressing for simultaneous in situ detection and elimination of pathogenic bacteria, Acta Biomaterialia, 2024, 174, 177-190.
3. S. Mao*, Recent advances in nanowire sensor assembly using laminar flow in open space, TRAC Trends in Analytical Chemistry, 2023, 159, 116918.
4. H. Lin, N. Kasai, N. Xu, H. Nakajima, S. Kato, H. Zeng, J.-M. Lin*, S. Mao*, and K. Uchiyama, Localized hydrodynamic flow confinement assisted nanowire sensor for ultrasensitive protein detection, Biosensors and Bioelectronics, 2022, 218, 114788.
5. S. Mao*, X. H. Hu, Y. Tanaka, L. Zhou, C. H. Peng, N. Kasai, H. Nakajima, S. Kato, and K. Uchiyama, A chemo-mechanical switchable valve on microfluidic chip based on a thermally responsive block copolymer, Chinese Chemical Letters, 2022, 33(6), 3083-3086.
6. Y. Nishitani, N. Kasai, H. Nakajima, S. Kato, S. Mao*, and K. Uchiyama, Regioselective fabrication of gold nanowires using open-space laminar flow for attomolar protein detection, Chemical Communications, 2022, 58(27), 4308-4311.
7. L. Zhou, N. Kasai, H. Nakajima, S. Kato, S. Mao*, and K. Uchiyama, In Situ Single-Cell Stimulation and Real-Time Electrochemical Detection of Lactate Response Using a Microfluidic Probe, Analytical Chemistry, 2021, 93(24), 8680-8686.
8. N. Xu, H. F. Lin, S. Lin, W. L. Zhang, S. Han, H. Nakajima, S. Mao*, and J. -M. Lin*, A Fluidic Isolation-Assisted Homogeneous-Flow-Pressure Chip-Solid Phase Extraction-Mass Spectrometry System for Online Dynamic Monitoring of 25-Hydroxyvitamin D3 Biotransformation in Cells, Analytical Chemistry, 2021, 93(4), 2273-2280.
9. Q. S. Huang†, S. Mao†, M. Khan, W. W. Li, Q. Zhang, and J.-M. Lin, Single-cell identification by microfluidic-based in situ extracting and online mass spectrometric analysis of phospholipids expression, Chemical Science, 2020, 11(1), 253-256.
10. S. Feng†, S. Mao†, J. X. Dou, W. W. Li, H. F. Li, and J. M. Lin, An open-space microfluidic chip with fluid walls for online detection of VEGF via rolling circle amplification, Chemical Science, 2019, 10(37), 8571-8576.
11. S. Mao, Q. Zhang, W. Liu, Q. S. Huang, M. Khan, W. L. Zhang, C. H. Lin, K. Uchiyama, and J. M. Lin, Chemical operations on a living single cell by open microfluidics for wound repair studies and organelle transport analysis, Chemical Science, 2019, 10(7), 2081-2087.
12. S. Feng†, S. Mao†, Q. Zhang, W. W. Li, and J. M. Lin, Online Analysis of Drug Toxicity to Cells with Shear Stress on an Integrated Microfluidic Chip, ACS Sensors, 2019, 4(2), 521-527.
13. W. Li†, S. Mao†, M. Khan, Q. Zhang, Q. S. Huang, S. Feng, and J. M. Lin, Responses of cellular adhesion strength and stiffness to fluid shear stress during tumor cell rolling motion, ACS Sensors, 2019, 4(6), 1710-1715.
14. S. Mao, W. L. Zhang, Q. S. Huang, M. Khan, H. Li, K. Uchiyama, and J.-M. Lin, In Situ Scatheless Cell Detachment Reveals Correlation between Adhesion Strength and Viability at Single-Cell Resolution, Angewandte Chemie-International Edition, 2018, 57(1), 236-240.
15. S. Mao, Q. Zhang, H. F. Li, W. L. Zhang, Q. S. Huang, M. Khan, and J. M. Lin, Adhesion analysis of single circulating tumor cell on base layer of endothelial cells using open microfluidics, Chemical Science, 2018, 9(39), 7694-7699.
16. Y. Zhang, S. Mao*, Y. Suzuki, Y. Tanaka, M. Kawaguchi, W. F. Zhang, H. L. E. Zeng, H. Nakajima, M. Yang, and K. Uchiyama*, Elaborately programmed nanowires fabricated using a tapered push-pull nozzle system, Chemical Communications, 2018, 54(7), 719-722.
17. S. Mao, Y. Zhang, Q. Zhang, J. M. Lin, and K. Uchiyama, Local surface modification at precise position using a chemical pen, Talanta, 2018, 187, 246-251.
18. S. Mao, Q. Zhang, H. F. Li, Q. S. Huang, M. Khan, K. Uchiyama, and J. M. Lin, Measurement of Cell-Matrix Adhesion at Single-Cell Resolution Reveals the Functions of Biomaterials for Adherent Cell Culture, Analytical Chemistry, 2018, 90(15), 9637-9643.
19. S. Mao, W. W. Li, Q. Zhang, W. L. Zhang, Q. S. Huang, and J. M. Lin, Cell analysis on chip-mass spectrometry, TRAC-Trends in Analytical Chemistry, 2018, 107, 43-59.
20. C. H. Lin†, L. Lin†, S. Mao†, L. J. Yang, L. L. Yi, X. X. Lin, J. M. Wang, Z. X. Lin, and J. M. Lin, Reconstituting Glioma Perivascular Niches on a Chip for Insights into Chemoresistance of Glioma, Analytical Chemistry, 2018, 90(17), 10326-10333.
21. S. Mao, Y. Zhang, H. F. Li, H. L. Zeng, J. M. Lin, and K. Uchiyama, Writing of nanowires via high viscosity-induced nano diffusive layer, Journal of Materials Chemistry C, 2017, 5(45), 11666-11671.
22. S. Mao, Y. Zhang, W. Zhang, H. Zeng, H. Nakajima, J.-M. Lin, and Katsumi Uchiyama, Convection-Diffusion Layer in an Open Space for Local Surface Treatment and Microfabrication using a Four-Aperture Microchemical Pen, Chemphyschem, 2017, 18, 2357-2363.
23. S. Mao, C. Sato, Y. Suzuki, J. Yang, H. Zeng, H. Nakajima, M. Yang, J.-M. Lin, and K. Uchiyama, Microchemical Pen: An Open Microreactor for Region-Selective Surface Modification, Chemphyschem, 2016, 17(20), 3155-3159.
24. N. Wang†, S. Mao†, W. Liu, J. Wu, H. Li, and J.-M. Lin, Online monodisperse droplets based liquid-liquid extraction on a continuously flowing system by using microfluidic devices, RSC Advances, 2014, 4(23), 11919-11926.
25. S. Mao, J. Zhang, H. Li, and J.-M. Lin, Strategy for Signaling Molecule Detection by Using an Integrated Microfluidic Device Coupled with Mass Spectrometry to Study Cell-to-Cell Communication, Analytical Chemistry, 2013, 85(2), 868-876.
26. S. Mao, D. Gao, W. Liu, H. Wei, and J.-M. Lin, Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection, Lab on a Chip, 2012, 12(1), 219-226.
27. H. Lin, N. Xu, S. Mao, H. Nakajima, J.-M. Lin, K. Uchiyama, N. Kasai, L. Lin, Robust Long-Nanowire Fabrication by Clean-Phase-Assisted Micro Chemical Pen for Enhanced Bioassay Sensitivity, Analytical Chemistry, 2024, 96. 14339-14347.
28. Q. Zhang, S. Feng, L. Lin, S. Mao, and J.- M. Lin, Emerging open microfluidics for cell manipulation, Chemical Society Reviews, 2021, 50(9), 5333-5348.
29. N. Wu, Y. J. Zheng, L. Lin, S. Mao, Z. H. Li, and J. -M. Lin, Controllable synthesis of multicompartmental particles using 3D microfluidics, Angewandte Chemie-International Edition, 2020, 59(6), 2225-2229.
30. J. T. Chen, S. Mao, Z. Y. He, L. J. Yang, J. F. Zhang, J. M. Lin, and Z. X. Lin, Proteomic distributions in CD34+ microvascular niche patterns of glioblastoma, Journal of Histochemistry & Cytochemistry, 2022, 70(1), 99-110.
31. Q. Zhang, S. Mao, W. W. Li, Q. S. Huang, S. Feng, Z. Y. Hong, and J. -M. Lin, Microfluidic adhesion analysis of single glioma cells for evaluating the effect of drugs, Science China-Chemistry, 2020, 63(6), 865-870.
32. T. Xie, N. Li, S. Mao, Q. Zhang, and J. -M. Lin, Cell Heterogeneity Revealed by On-Chip Angiogenic Endothelial Cell Migration, ACS Omega, 2020, 5(8), 3857-3862.
33. J. Dou, S. Mao, H. F. Li, and J. M. Lin, Combination stiffness gradient with chemical stimulation directs glioma cell migration on a microfluidic chip, Analytical Chemistry, 2020, 92(1), 892-898.
34. Z. Zhong, S. Mao, H. F. Lin, H. F. Li, J. H. Lin, and J. M. Lin, Alteration of intracellular metabolome in osteosarcoma stem cells revealed by liquid chromatography-tandem mass spectrometry, Talanta, 2019, 204, 6-12.
35. Y. Zheng, Z. N. Wu, M. Khan, S. Mao, K. Manibalan, N. Li, J. M. Lin, and L. Lin, Multifunctional regulation of 3D cell-laden microsphere culture on an integrated microfluidic device, Analytical Chemistry, 2019, 91(19), 12283-12289.
36. W. Zhang, S. Mao, Z. Y. He, Z. N. Wu, and J. M. Lin, In situ monitoring of fluid shear stress enhanced adherence of bacteria to cancer cells on microfluidic chip, Analytical Chemistry, 2019, 91(9), 5973-5979.
37. Q. Zhang, S. Mao, M. Khan, S. Feng, W. L. Zhang, W. W. Li, and J. M. Lin, In situ partial treatment of single cells by laminar flow in the “open space”, Analytical Chemistry, 2019, 91(2), 1644-1650.
38. S. Wang, S. Mao, M. Li, H. F. Li, and J. M. Lin, Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass, Talanta, 2019, 191, 67-73.
39. H. Lin, S. Mao, H. Zeng, Y. Zhang, M. Kawaguchi, Y. Tanaka, J. M. Lin, and K. Uchiyama, Selective fabrication of nanowires with high aspect ratios using a diffusion mixing reaction system for applications in temperature sensing, Analytical Chemistry, 2019, 91(11), 7346-7352.
40. W. Li, M. Khan, H. F. Li, L. Lin, S. Mao, and J. M. Lin, Homogenous deposition of matrix-analyte cocrystals on gold-nanobowl arrays for improving MALDI-MS signal reproducibility, Chemical Communications, 2019, 55(15), 2166-2169.
41. M. Li, S. Mao, S. Q. Wang, H. F. Li, and J. M. Lin, Chip-based SALDI-MS for rapid determination of intracellular ratios of glutathione to glutathione disulfide, Science China-Chemistry, 2019, 62(1), 142-150.
42. M. Khan, W. W. Li, S. Mao, S. N. A. Shah, and J. M. Lin, Real-Time Imaging of Ammonia Release from Single Live Cells via Liquid Crystal Droplets Immobilized on the Cell Membrane, Advanced Science, 2019, 6(20).
43. Q. Huang, S. Mao, M. Khan, and J. M. Lin, Single-cell assay on microfluidic devices, Analyst, 2019, 144(3), 808-823.
44. L. Zhou, S. Mao, Q. S. Huang, X. W. He, and J. M. Lin, Inhibition of anaerobic probiotics on colorectal cancer cells using intestinal microfluidic systems, Science China-Chemistry, 2018, 61(8), 1034-1042.
45. Z. Zhong, S. Mao, H. F. Lin, J. M. Lin, and J. H. Lin, Comparative proteomics of cancer stem cells in osteosarcoma using ultra-high-performance liquid chromatography and Orbitrap Fusion mass spectrometer, Talanta, 2018, 178, 362-368.
46. Y. Zhang, H. L. Zeng, S. Mao, S. Kondo, H. Nakajima, S. Kato, C. L. Ren, and K. Uchiyama, Reversibly Switching Molecular Spectra, ACS Applied Materials & Interfaces, 2018, 10(27), 23247-23253.
47. W. L. Zhang, Z. Y. He, L. L. Yi, S. Mao, H. F. Li, and J. M. Lin, Biosensors and Bioelectronics, A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification, 2018, 102, 652-660.
48. Z. N. Wu, L. Lin, M. Khan, W. F. Zhang, S. Mao, Y. J. Zheng, Z. H. Li, and J. M. Lin, DNA-Mediated rolling circle amplification for ultrasensitive detection of thrombin using MALDI-TOF mass spectrometry, Chemical Communications, 2018, 54(82), 11546-11549.
49. Z. N. Wu, M. Khan, S. Mao, L. Lin, and J. M. Lin, Combination of nano-material enrichment and dead-end filtration for uniform and rapid sample preparation in matrix-assisted laser desorption/ionization mass spectrometry, Talanta, 2018, 181, 217-223.
50. J. M. Wang, S. Mao, H. F. Li, and J. M. Lin, Multi-DNAzymes-functionalized gold nanoparticles for ultrasensitive chemiluminescence detection of thrombin on microchip, Analytica Chimica Acta, 2018, 1027, 76-82.
51. W. W. Li, M. Khan, S. Mao, S. Feng, and J. M. Lin, Advances in tumor-endothelial cells co-culture and interaction on microfluidics, Journal of Pharmaceutical Analysis, 2018, 8(4), 210-218.
52. M. Khan, Z. N. Wu, S. Mao, S. N. A. Shah, and J. M. Lin, Controlled grafted poly(quartanized-4-vinylpyridine-co-acrylicacid) brushes allure bacteria for effective antimicrobial surfaces, Journal of Materials Chemistry B, 2018, 6(22), 3782-3791.
53. M. Khan, S. Mao, W. W. Li, and J. M. Lin, Microfluidic devices in the fast-growing domain of single-cell analysis, Chemistry-a European Journal, 2018, 24(58), 15398-15420.
54. Q. S. Huang, S. Mao, M. Khan, L. Zhou, and J. M. Lin, Dean flow assisted cell ordering system for lipid profiling in single-cells using mass spectrometry, Chemical Communications, 2018, 54(21), 2595-2598.
55. Z. Y. He, W. L. Zhang, S. Mao, N. Li, H. F. Li, and J. M. Lin, Shear Stress-Enhanced Internalization of Cell Membrane Proteins Indicated by a Hairpin-Type DNA Probe, Analytical Chemistry, 2018, 90(9), 5540-5545.
56. H. Zeng, Y. Zhang, S. Mao, H. Nakajima, and K. Uchiyama, A reversibly electro-controllable polymer brush for electro-switchable friction, Journal of Materials Chemistry C, 2017, 5(24), 5877-5881.
57. S. Shan, Z. Y. He, S. Mao, M. S. Jie, L. L. Yi, and J. M. Lin, Quantitative determination of VEGF165 in cell culture medium by aptamer sandwich based chemiluminescence assay, Talanta, 2017, 171, 197-203.
58. M. Jie, S. Mao, H. Liu, Z. He, H. F. Li, and J. M. Lin, Evaluation of drug combination for glioblastoma based on an intestine-liver metabolic model on microchip, Analyst, 2017, 142 (19), 3629-3638.
59. M. Jie, M. Jie, S. Mao, H. F. Li, and J. M. Lin, Multi-channel microfluidic chip-mass spectrometry platform for cell analysis, Chinese Chemical Letters, 2017, 28, 1625-1630.
60. J. T. Chen, S. Mao, H. F. Li, M. C. Zheng, L. G. Yi, J. M. Lin, and Z. X. Lin, The pathological structure of the perivascular niche in different microvascular patterns of glioblastoma, PloS One, 2017, 12(8).
61. W. Zhang, S. Mao, J. Yang, H. Zeng, H. Nakajima, S. Kato, and K. Uchiyama, The use of an inkjet injection technique in immunoassays by quantitative on-line electrophoretically mediated microanalysis, Journal of Chromatography A, 2016, 1477, 127-131.
62. J. Yang, D. Katagiri, S. Mao, H. Zeng, H. Nakajima, S. Kato, and K. Uchiyama, Inkjet printing based assembly of thermoresponsive core-shell polymer microcapsules for controlled drug release, Journal of Materials Chemistry B, 2016, 4(23), 4156-4163.
63. J. Yang, D. Katagiri, S. Mao, H. Zeng, H. Nakajima, and K. Uchiyama, Generation of controlled monodisperse porous polymer particles by dipped inkjet injection, RSC Advances, 2015, 5(10), 7297-7303.
64. J. Yang, M. Hida, S. Mao, H. Zeng, H. Nakajima, and K. Uchiyama, A chemo-mechanical switch for controllable water transportation based on a thermally responsive block copolymer, Chemical Communications,2014, 50(71), 10265-10268.
65. W. Liu, S. Mao, J. Wu, and J.-M. Lin, Development and applications of paper-based electrospray ionization-mass spectrometry for monitoring of sequentially generated droplets, Analyst, 2013, 138(7), 2163-2170.
66. F. Chen, S. Mao, H. Zeng, S. Xue, J. Yang, H. Nakajima, J.-M. Lin, and K. Uchiyama, Inkjet nanoinjection for high-thoughput chemiluminescence immunoassay on multicapillary glass plate, Analytical Chemistry, 2013, 85(15), 7413-7418.
67. J. Liu, D. Gao, S. Mao, and J.-M. Lin, A microfluidic photolithography for controlled encapsulation of single cells inside hydrogel microstructures, Science China-Chemistry, 2012, 55(4), 494-501.
68. H. Wei, H. Li, S. Mao, and J.-M. Lin, Cell Signaling Analysis by Mass Spectrometry under Coculture Conditions on an Integrated Microfluidic Device, Analytical Chemistry, 2011, 83(24), 9306-9313.
69. W. Liu, H. Wei, Z. Lin, S. Mao, and J.-M. Lin, Biosensors and Bioelectronics, Rare cell chemiluminescence detection based on aptamer-specific capture in microfluidic channels, 2011, 28(1), 438-442.